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JArisT FIRST IN CHANGE :

| FE D E A|AH

o HTy?t kol lO|E|S BEHOE Malste HEY AAY
- SI=9I0f, 2ZE 0|02 F), HOlE, etc

1 Zettabyte (ZB) = 1 Trillion Gigabytes (GB) > QXS (Artificial intelligence)
We face an overwhelming amount of data in every industry 44 Zettabytes

>25PB 292 exabytes > ArE 214l (Internet-of-Things)

> AE2FHA} (Automated vehicle)

Source hrrps Awvww, mckmsey comrfeatured Source: http./global-autonews.com

https:/strategyonline.ca/202 1;0&’30;’(:!9!0{':
acquires-ai-firm-groundswell/ -insights/internet-of-things/
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| FE D E A|AH

¢ 7| SX|s SEHOS HoM= wEEY AAHO| LAY
=4 8

: HIO|E &4 88 Data-centric applications, e.g. 213X &

CPU  mmEmmmmE QT vs OIS
12027 S IS B BN 54 = oS oio)
GPU s e %ﬁ*{‘ ”’fﬁf‘
1767 jocioo) % :

el
1002

‘YtiE st SAMRIEANCPU) 120272k TJ2HEH2IE A GPU)
17671, 100 t ERstAIR 0f 9Ek2 QI7re] Skl SHopot Fu| & https:/fwww.chosun.com/opinion
I 2o 8 Ak Kook Ispecialist_column/2021/11/15

> Artificial Intelligence algorithm (&&, &&)
» Computer hardware with von Neumann architecture (£ 0|2 O}7| 5| %)
- Massive use of CPU/GPU with high power consumption (170 kW vs. 20 W)

JrisT

FIRST IN CHANGE  «
| FE D E A|AH

& Z 0|8 0}7|ElX von Neumann architecture
- Processing unit, Control unit, MemoryZ2 718 &l ZHFE 07| 8K

l Memoly ‘ ‘ Registers
I l I J, i !nhmaLMemoty
Arithmetic ) Sersge A
—+  Logic
C%r::‘;ol Unit Primary Memary / TR
I+ Main Memory
_

N\

[ input | [output |

B External
B Flash Is:mnry ¢
1 "1 4 dick| (Permanen
Stovage
1 Arsa)

>

http:/fwww. visifacts.com

y

v ’dolE ZH|of Tt R4t HitsE

v YA O3t =XHE K2
> NO|UX| A2, H|ESH

v H| T Z=3LE HO|E o CHS M2|sE 0|g
v ZZMAMet H2E7t 2elE F=
S5 E 0|0 HEs{ A

JrisT

von Neumann bottleneck N Zkdah, Nat Elec2018)
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Syste_ms of Neuromorphrf: Adap"ve Defense Advanced Research Projecis
Plastic Scalable Electronics Agency (DARPA), 2008

=10 newrons/  =5X10% long range  Biological Brain
cortical column axons & 1 Hz

- = 3 &« outee
Synap N Microcircuit m:m’ﬂ"” Brain :
B RS £

CROSSBAR cMos L ———
SRS SISHEATH fiisddd e - TrueNorth, IBM, Merolla et al. Science (2014)
7h q S450% - Loihi Intel
. | S0 ensistors 5 e - SpiNaker, Manchester Univ.
TR ien @500 ansistos) Ceutswin 10 MONLGHUSEE B i - NeuroGrid, Stanford Univ.

nauran neurons/cm? digital comms

TERL AAH

¢ Q70| Rx|E FHStE HP A2HE BASIE HFEY A2H

- QIZH x| A AARO] CHSE Of3), ©1F A1 BY 2NE|F, SLE O, A|AE OfF|EX
- FEH-AEA DYUE HBAHZA (~10" neuron, ~10'5 synapses)

- YD AHATISAIE S8 A & 715X |HOIEE S8t &

- H|+ =3} M=o Cizt 285 X2|5H (image, video, sound, etc.)

- 52 HX| E8~20 W (vs. 10" W in von-Neumann machine)

Tianjic, Tsinghua Univ.

JrisT FIRST IN CHANGE

. w225 A|AE! Brain-inspired computing systems

@ Artificial neural network, ANN ® Spiking neural network, SNN
e.g., Deep neural network (DNN)

(a) (b)[@
X4
x y % -i:"rl"- Il‘lb
2 1 2 : * e
th SIS
X3 q b ¥ I S A
E
v ¥
v"Multiply-accumulate(MAC) operation =
: Current summation along rows and columns - )
- Summation along columns needed for forward v'Spike-for-learning
propagation of neuron excitation v’ Spike-for-communication with sparse freq.
- Summation along rows needed for v'Information encoded into timing and
” backpropagation of error terms frequency of the spikes (spike patterns)
Backpropagation algorithm _ v'Downstream spikes by time-integration of
¥ Learning by updating synaptic weight spikes with modified synaptic weight

& ]nferenc_e by _reading s_to_red synaptic weight v'But, unavailable proper model(algorithm)
v'But, not biologically realistic
Burr et al. Adv. Phys. X (2017).
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Presynaplic spike 0.4 = :u:. =
02 E | o e
— £ 9
008 e | | |
& i
_ 15 i
Z 12 E |
i
a |}
W e - M
] 7 8 ] . A s Ty
(Ref: Chemical synapse, wikipedia.org) Excitaioﬁn:gc;?]inhibito Potentiation/Depression ike-timina- dent plastici
—H e s . tunable synaptic weight TDP
posisynaptic current
=
Presynaplic spikes g:i s & 2o e |
At = 200ms 02§ § Rehearsal o
& o8
T 3 00F 3 STM
gl — £ .. w
~ 340 E Incoming
g 320 A2 - stimuius s SM
& i Rehearsal
300 BT, A e | . . IIIIIII
0.0 0.5 1.0 15 T T T— Time
Time (s) ESriatiia e SE R iR Multi store model": human memory moue:

Paired-pulse facilitation (PPF)

proposed by Atkinson and Shiffrin

(Rubin, Hinton, and Wenzel, 1999)

*
*
*

*

Al A AXH 54 24

IUE FR-AYA HEYI 7= €4 & CMOS 233 H Sy

Ofg2d, HEH, i, HIZEH AlYA 7H5X| #3} endurance, retention 54

ChYst A2 7 &: Paired-pulse facilitation(PPF), spike-timing-dependent plasticity(STDP), short-term and long-term
plasticity(STP, LTP), excitatory/inhibitory postsynaptic response &

HEY, 004X EE, D4 E 5 eg. brain: 4 mV, nA, <pl/event, ms), OPE Y, 2L EX EY
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- 0|2 0|52 0|83 QT AlHA &%t
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-

Potentiation/Depression

Nonvaolatile

Emerging

—  Ferroelectric Memory |

1 FeFET
o o o o ow = =
FTJ :

—— ==y

H RerAM | !

4F* footprint

Twe terminal

Electrochemical Metallization Bridge ]

Metal Oxide - Bipolar Filament:

Metal Oxide - Unipolar Filamenta

Metal Oxide - Bipolar Nonfilamentary

< Structures
| |

A. Chen, Solid State Electronics (2016).

-rI Mott Memory |
I

I
T{ Macromolecular Menory I

I
Molecular Memor

Axon

hillock Post-synaplic neuron

&;na;:se

Pre-synaptic neuron

R. §. Williams, |IEEE Spec. (2008).
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= = =1 L
Il. &| & BAlst Q18 Al A AKX} — W 22| 7|5
2THX} 22| - Memristor
- MH FEH-AEA UERT FECE A
- AlHA 7S A YH0|EE 83t 85, 7|19 7|2 SIF H2Ld OI'E=21 MEfHS}
- CHUSH Al A 2|8 BAF (AIZEIES(SNN) 74, PPF, STR LTP 7| 2J4tE) FO| 5)
¢ 13 i 2 2| Phase-change memory (PRAM)
W esote, [ TTordaa ] ©
i 'E'- Phasc d’ha'ﬁgjefﬁ- RESET pulse
Cracogende ~ material 3 A | I Tmett
/ 7 2
2 SET pulse
%1 Insulator E | T
5% |2 B ' 4 “===lerys
\ ‘Bottom electrode \_
= : e FL
2 |__ Programmable Tme
o region
,’-/\"\’Jomlll\e
T . Wong et al. Proc. IEEE (2010)

mEmory element
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& 'H3} i 22| Phase-change memory (PRAM)

2) | Top electrade 153“
= Gradual Reset ld/ [‘u'w e RESET puise
2 100.0k} o= |+ Gradual Set - 5 P e
ot 1 -, 1@’ 3
: honm A~ L g
= b 4 & ‘i g III ; II'ﬂﬂI “:T g SET pulse
U L S A 10't F
& I . I i Read g
¥ : room|
0 20 40 60 80 100 —_—
e Programmable
2100 2200 2300 2400 2500 Time
Pulse Number ke region
Kuzum et al. Nano Lett.(2012)
Top electroda
Phase change material d .,
In amorphous and T i — — -
crysialine phase 12 4 an.Ai (=B~ s T 015
Bottom electrode 10 1 " Tirtar-dentce randomnass Averags « = 0.840 45
T T g " __ g, 0,10 = 2= 085848 | Aworage o= 0BT IS
/Dcprc:ss:m\ g 5] 2 gos ] o= 0801 43
e 8 4] g 0
t g ) -2 -4 o 1 H 3 4
Potentiation Petantiation 24 Candustanss changs S}
IL ki p 04
-2 - :
0 5 10 15 20 Boybat et al. Nat. Commun. (2018)

MNumber of potertiation pulses
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Y& BALSE QI Z A|LHA AKXl - M 22| 7| 8F

& X &3} o] 2 2| Resistive memory (RRAM)

Voltage
Compliance

lop

nanowire E
levet Oxide £
o ; _svnla'._ Y. l?)
A gpomiscupuieal SET /| r
level
() — Voltage z
Wong et al. Proc. IEEE (2012) B
(a) CBRAM (b) Filamentary RRAM|| (c) Interfacial RRAM 105 0 05 00 05 10 15

] Applied Voltage (V)
Active top electrode Top electrode Active top electrode (@)

Resistive Resisticosssscesanss ] =
switching Iayaroo sw-m:hrg layer O A0 O 000 & Mg W
00 o0 o 00030 o2\0 ooo| £
OO0 v oxygen vacancy | 1 : © 100k
000 filamant Insutating layer \ Oxygen jons. E’ R
o =
o8 g tokp —@— Rugn
O ) 'E
A SET: 1.5V

Bottom electrode Bottom electrode

Bottom electrode

25°C RESET: -1.4V
100 . . ad sl .
10° 10" 102 10® 104 108 0B

Wan et al. Adv. Mater. Technol.(2019) Humber.of ’{'}ﬂm"mg cycle

Lee et al. IEDM (2008)
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Resistance (Q)

E[_l.

initial state:
f 200 ki1 ~ 300 kiz

-28 .27 .26 -25.24 16 1.7 18 19 2
Pulse Amplitude (V)

The HfOx/AIOx synapse device
resistance modulation (both
potentiation and depression part) by
the pulse amplitude

() BOD

£

g et | et (L Potentiation
g 1| At=0

g M00F —f. f— |

g presphe porstapibe

2 —ANN— =]

g 200 synapse | B
[T
: "MFEEmEg

o - Dopnulonm«b

Spike Timing At [i w.j

STDP-like curve calculated
with the data (a)

An electronic synapse based on RRAM — HfO,/AlOx
Yu et al. IEEE Trans. Electron Dev. (2011)
o pre-neuron electronic synapse ) 5 the first 100 cylces
Ca™ar Na* g W &

: ﬂ LA & 'sl j
biological 0% -
=g — 1M

oxygen ‘n‘ q J -g J - 1
107 10 20 30 40 S50 &0 70 80 90 100
LT e
4 "Resst Set cq“nllan:n =100 uA ® M b
10} / \“ h\
10° _ \s
=k 5 g1 “"" : ’ﬂ'J
£ Ll
E 18 F ] é 10’ =8= LRS
E 10"F Ru-.m stop % 10° —a— HRS
010" voltage =-3.3V £ g
1 JF HRS 'ﬂ' = - ...-u—----..r'-"\r-""'\'l.q
L -3 2 z 0 1 2 m:n‘ _1‘0’ 10* 1w 10°
Voltage (V) cicle
() " (a) Resistance of HfOx/AIOx synapse,
10th pulse width: 50ns, gradual reset; five
pulses with amplitudes consecutively
2 10% increased from -2.2to —2.6 V
] Then, gradual set: five pulses with
3 ““f amplitudes consecutively increased from
o continucusly 14t018V
0y muliple HRS = (b) Endurance test to 10° cycles. Pulses
S of £3 V, 50 ns width
— s El 0 2
Voltage (V)
IJ 1 Il I
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SiGe epitaxial memory based
Choi et al. Nat. Mater. (2018)

on engineered dislocations

Temporal variation: 15

images of epiRAM after etching for 05, 5s.and 10's Scade bar, 200 nm. h, Semilagarithmic d.c. -V characteristics of s and 55 etched eplRAM L Linear-
scale d.c. I-Vcharacteristics of D's and 55 etched apiRAM. |, [-V characteristics of apiRAM at high resistance state (HRS} and SiGe at the virgm state.

Ay 3
H
Wit g
d ° 3
T
/ &
: 2 o1 E 3 401 23 a5 a8 40 42
£ -]
g / ; et Y 5 Vakage (V) Valtage (V) Setvoltage (V)
E B} 2, L 0 100 200 300 400 500 600 700
I Y 1 E =
Wi \ F o Cycle no.
4 | |'r 1 R b
| v ot et
" -4 -2 o 4 a 0 a0 0 L o
Vg (V) Gyl Voltage (V) 5 i
: ol
b i i i i
00 6 —— EpiRAM at HAE E . .k
1 —— Bk S0 al virgn siale /’ )
z g g v iy
E ot E = _
E g o g & B e W @
L R 8 o a Fuise sumber
1 <iof d e
-+~ D=l b il ’“
g el I 515 aicn|
L2 [ - - o =z 4 N = o
aags (V] Voliags [V} oRags (V] iw
(3| i
Fig. 1] Impact of dislocation on the characteristics of the SIGe epiRAM. a. A conceptual schamatic of the epiAM during switching. b, Cross-sectional & .1 P—
TEM image of 60 nem 5iGe grown on a 5 subistrate, Scale bas, 25nm ¢, Cros iorsal SEM image of an apiRAM device Stale bar, 100 nm d, Measuserd [ L
frrge Lo show difficull resel proceds. e The set vollage varstion of the | 1eh o e it )
wwidaned diskocations cver 100 quasi-static -V sweeps. Inset: histogram for set voltage distribution. f, Measured d.c. -V chara tics w — e
af o Agsdislocation-free i-5i/7-5i substrate device, whers no switching behaviour = olserved even when appiying a very high voltage. g Plan-view SEM N e
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Engineering synaptic characteristics with TaOx/HfOx bilayer
Kim et al. Nanotechnology (2018).

Current (A)

o

Current (A)

—— 1" cycle
o 100" cycle

A

0 1
voltage (V)

2

Pulse number (#)

.:'M“ - atlon l-‘ 480 o Potentiation
@ gofSL pesoimensd I (. B 2 Depresaion
§ o E 400 “YQA! u
8 300 8 360 g-

] Q L3 . ’ ‘? 0.‘ 'ﬁ
f&',- u‘fs:
S 100 S 2 ’

0 10 20 30 40 50 60 70 80 o 200 400 600 8OO

Pulse number (#)

IArisT FIRST IN CHANGE s
= o= 1| L
Il. &S 2ALeH Q15 A'HA AX;— | 22| 7| &k
Nanoscale memristor — cosputtered Ag in Si = continuous motion of conducting
front leading to analog change
Jo et al. Nano Lett. (2010)
(a) | (b) @ .
Memristor memristor synapse OAT o IIF.‘
'
gaa- . ;:‘ %
2 1]
= X \
. Sl _
= rf
a1rg
To pre-neuron ‘? = : k
Te sk KO OO-IG 20 80 120 60 200
{b} Puse #
() (d) s SR
T LT
; 08 E o | P
= i 2 z LS
3 Calculated E E 0:4 é ,.-2 e Time {m=]
EM -]' — et | {02 ga g §150 I & 68 8 o 12 14
dfen i S 1 R N
_g:-mm i — il > g o}—a I I — 3
o.nu T 2 3 2 a4 ot 00 48 26 44 d9z2 E_ﬁ
Voltage (V) Time {sec) 22
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Analog synaptic characteristics in Pt/CeQ,/Pt: interface state modulation
Kim et al. Nanotechnology (2017), APL Materials (2019)
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. . . 50610
o [l Voltaga | Va.ssit oo | ——Valiage
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x 1 1 @
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1 | 2 2 0nt0
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Ly ¥l —— ] — 2
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. = T 10
10 = - <
& T
5 H .
5 z E 10
a
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0 10" b o Iiet st
10
. : - 1n H 10 L " . \ L "
WoE B K 2 0 Z 46 50 U 50 100 150 700 750 300 350 400 450 e 0 108 150 200 240
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g e - 1500 -
| Read @u2v
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% mp?éo B0 B0 8™ 90 i T R
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Volatile

SRAM

DRAM |

Stand-alone

Tweo terminal

Electrochemical Metallization Bridge i

Metal Oxide - Bipolar Filamentary |

Metal Oxide - Unipolar Filamentary

Metal Oxide - Bipolar Nonfilamentary

i | < structures
) 1
4 ¥

A. Chen, Solid State Electronics (2016).
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€ MOSFET, TFT
1Iu 0.2~ )
- L= 10 pm, W= 10 pm s Vg =2V
Toxe = 4nm, ¥y =03V o
8 "J""
_ : el ’./' —
‘." .:I f,.” ‘-‘“‘hl“illil““ﬁlﬁﬂ“
L
3 Com W >
| ‘E’:*"'W V, =05V Tysar = mcoxcluus( Vgs' Vo
v, (121 0.5 Ill.:lv } 1 0
¢ Z2A| B =2| Flash memory
—. Iy No electrons Electrons W0V Y v
3 stlato stored stored
e ){l'I1.-i-.--_--»I.-::-.z:-.-I.|\L-| / / ov &I oV ’_?_[ Hv Ii' 5y
:_Thin insulator 0" 4 g i Iﬁl 1 Eﬁ,:r__] 7 l? i
. / /T Y] ]
N7 p oD / / P p P
(a) \ 5 B ; J‘.
1 * u - n.\u' . - iR v .
v v Tunneling write Funneling erase Ho-gleciron wrile
AV, =— Q hiow thiet (€} () (€}
r— C (h)
FC
C. Hu, Modern Semiconductor Devices for Integrated Circuits (2009).
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¥ S BAtet oI5 Al A X o 22f 7| §F

3THX} M 22| Synaptic Tr.

st d=Xe|E o2 HALE Sl 22|0hA 40| 7ts
-3EHALE 28510 BOt At & 7 & Zhd=at 2|48}
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Zhu et al. Nat. Commun. (2014)

# Nanogranutar Si0y « Pralon (H*)

Figure 1 | Schematic images of transistors with different structures.
{a) A traditional leld-ellect transister with a battorm-gate structure.
{b) At in-plane-gale transistor with a bettom conductive layer

{3 A lateraly-coupled |20 transistor propased in this work. (d} An
120-hased artificial synapse with twa in-plane pre-synaptic inputs. Tao
n-plane gates are regarded &5 the presynaptic input terminals, and the
sell-gssambled (20 channel with seurce/drain s regarded ag the
pasteynaptic output terminal

Figure 2 | Microstructure of the P-doped 5i0; films. (a) The cross-
sectional SEM image of the P-doped nanogramular 5i0; electrolyte films.
{Scate bar. 500 nm). (b)Y High-resalution TEM image of the P-doped Si0;
elactralyte films on TEM Cu grid (Scale bar: 40 nm),
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Fuller et al. Adv. Mater. (2017)

Li-ion synaptic transistor — Li ion migration into electrolyte

- Li ion accumulation at the interface
Zhu et al. ACS Appl. Mater. Interfaces (2020)
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Solution-processed In,0; flexible synaptic transistor with LiClO, in polyethylene gate electrolyte
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A synaptic transistor based on oxide-semiconductor TFT
Lee et al. Adv. Electron. Mater. (2020)
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* Introduction — neuromorphic computing system

+ Hardware-based neuromorphic device system

[1] Synaptic materials for artificial synapse device

[2] 3D integrated neuromorphic system

» Conclusion

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

Quantum computing
Multiple-states qubit
-» High processing speed

Von Neumann
architecture

Neuromorphic system

Biomimetic of brain
= Parallel computing

+ Current Von-Neumann architecture bottleneck between memory and processor
- Alternative computing system: Neuromorphic computing, Quantum computing

+ Highly efficient data process with low power consumption can be possible with
hardware-based neuromorphic devices

& . D\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
T “ ) Namo Electronic Devices & Materials Laboratory
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Neuromorphic Chips m NEDMLU

e Elemtrams Devices & Aatarials Laberstery

TrueNorth (IBM

18-ARMS core/chip - 45pJispike
- SoC (102mm?) - 1M Neuron
- 18K neuron/chip - 256M Synapse
- 130nm - 73mwW
50KW@500M
Neurons
LOIHI (INTEL. Dyanp (The University of Zurich)
- 14nm - 28nm
- SNN based STDP - SNN based On-chip
training training
- 130,000 Neuron
- 130M Synapse

* Hardware-based neuromorphic chip has been released, but power consumption
could be potential issue since these chips rely on the conventional CMOS-based
devices

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

N NEDML

Wang Flectremss Devicns & At Laberssery

Examples of biological synapse related characteristics

Potentiation Paired-Pulse Facilitation Spiking-Time- Leamnin: etting-Re-
[Depression {PPF) Dependent-Plasticity Learnin
{STDP)
1] @ M W U e e o H ] ]
200} Poserhaton v

+1V, 40ms
Depresson
W, 1ims

Condudance (nS)
AEPSC amplitude, %
£ & - = &5 = 5

@ & ¥ 0 o o4 W -y . vy
4 Spika Timing, ms w w w

= ~ 10 X
010 20 300 T hue K
Puilse nember

]
me (ms)

# % e

(Chao Due et al., Adv, Mat, 2017 & Wang et 8, Adv. Mat. 2074}

+ In biological synapse, signals transfer to neuron depending on weight and
various corresponding characteristics.

* In hardware-based synapse, device should be able to emulate the biological
synapse functions such as potentiation/depression, paired-pulse facilitation,
spiking-time dependent-plasticity, learning-forgetting-re-learning, and so on
using various material, devices, and structure.

. o\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory
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< Neuromorphic System: Synapse & Neuron ‘jﬁ\q NEDMLUL

Current Meds Seming Voltage Made Seniing
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Acompect model of anslog RRAM

Conductance (1S}
L3 =

-3

+ Device (ex. RRAM array, Flash array) & neural network (ex. CNN, BNN) approaches

+ 3D neuromorphic system with array device

=, D‘\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory

NEDMU

Wato Elrsirans: Devicer & Watariais Loharstery

N

Neuromorphic Device System Materials for Neuromorphic Device

<. Neuromorphic Device System

ERo

LT —

|

Accuracy (%)

sunssaned

CHEFE A7 HA

ASA A3}

————  SRAM

B

Structures for Neuromorphic Device

* Hardware-based neuromorphic device system can be realized by different
materials and device structure along with neural algorithm.

. Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
“‘\“ > Nano Electronic Devices & Materials Laboratory
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Synaptic Materials for Artificial Synapse (1/8) |DNENA=L=LLS

Wang Flectremss Devicns & At Laberssery

(@-1 Metal Oxide
High k-metal oxide (Al,O;, HfO,, and HFAIO, )

‘Comparative Study of Al,O,, HfO,, and HAIO, for Improved Self-Compliance Bipolar Resistive Svitching' ‘Influence of Oxygen Vacancies in ALD HfO,,, Thin Films on Resistive Switching Phenomena with a
Journal of the American Ceramic Society 2017 TiHfO, /Pt Structure’ Applied Surface Science 2018

+ The comparison of resistive switching (RS) storage in the same device architecture
+ Study its effect on RS behavior with a Ti/lHfO,_ /Pt structure

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

. Synaptic Materials for Artificial Synapse (2/8) |DVENA=L=LLS

e Elemtrams Devices & Aatarials Laberstery

(-2 Metal Oxide

Bi-layer (TaO, & HfO,)
' e Y _'-H-'l" — W
o .y "\ =
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t PSS 4 E w
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£ o | im g
El e 1 80
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B N 2B R R T e Pulse smber (8] Fulse nusber (1)
Comikance-Fres, Digital SET and Analtg RESET Symaptic Chaclerisics of Sub-Tankakin Oxide Based Enginsering Synaptic Characlerktios of Tat It Bi-Layered Rewsliva Swiching Davice’
Neuramorni: Device” Sclentific Reports 2018 Nanatechnology 2018

« It exhibits the digital SET and analog RESET switching without any compliance current

+ TaO,/HfO, bi-layered device: gradual switching and symmetric conductance change

S D\\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory
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Synaptic Materials for Artificial

S e
ped 2D Memnsine Devices'
HPG Asia Materials 2013

Syiaplic

.

n-ZnQ cone-shape:

NEDMU

e Elemtrams Devices & Aatarials Laberstery

Synapse (3/8) fﬂ\ﬂ

% Using SolutioerPracessed Rule TiO, Thin
HNancscale 2019

iy aned Manochannel

Fitns for Campiemantary #nd Bipolar Switching Charackriatics’

bio-realistic synaptic plasticity functions in the Pt/n-ZnO/SiO,_,/Pt
Rutile TiO, (r-TiO,): Complementary RS (CRS) and bipolar RS (BRS)

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

Synaptic Materials for Artificial

@ Interface engineering of metal oxide
Ta,0,, + RTA treatment

NEDMU

e Elemtrams Devices & Aatarials Laberstery

Synapse (4/8) fﬂ\ﬂ

Ar plasma treatment

— 1
Pua Nurmer i) Puiaa Fueritar 9 LI
"Structural Enginesnng of Tantalum Creide Based Menistor and Iis Electrical Swiiching Responsas Lsing

Rapid Themal Annesng Jaumai of Alloys and Gompounds 2018
-

Lxd

Corvent (A} 3

tasein

[

AL e

Improved Resistve Switching and Synaplic Charactenstics. using Ar Plasma Imadiation on the TWHIC,
Interiace’ Journal of Alloys and Compounds 2018

Rapid thermal annealing (RTA): analog switching characteristics

Ar plasma-treated device: the symmetric and near-linear conductance change

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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Synaptic Materials for Artificial Synapse (5/8) m NEeEDMU

i Haao Elewirems Devieas & Uaierisl Labacstery

(3) 2D material and Quantum dot
2D material NbSe, for buffer layer Graphene oxide quantum dots

| G
. \\ r\

Supprusiad Stachastic Switthing Betavior and Impeaved Symaplic Functions in 2= Alcenic Switch Embediod with 2 tized an Cegasic Hi daped Braphens Cuids Cuanium Dots [N-
10 NbSe, Material ACS Applied Interfaces & Materiak 2021 |:L|um| r:f Artifirial Blo-Synapse &pplratoe’ Advanced Functional Materials 2019

+ A CVD 2D NbSe, blocking layer, the stochastic Ag-ion diffusion behavior is well-controlled

+ Graphene quantum dots (GQDs): threshold RS via silver cation (Ag*) migration dynamics

S D\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory
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Weao Elemtrams Deviens & Uatarials Labststery

DNA & Perovskite material

Cu,*doped Salmon DNA

Hlml\l

" L |
EEEE T NN
q"m ™y T (3}
of Rasislive Swlchi e i Trargearend and Bic-Comgatiie Cirs -n-.n tarminal Adiicial Synapss vith S — Paniie CHNH, P, s,.mm.e Matarial
doped Salme DHA Coingosds Thin Film 18 Pawser Enorgy (=47 flure) Journal of Alioys 2nd Compodnds 2020

» The Cu?*-doped salmon DNA composite thin film: good bipolar switching characteristics
+ Organic—-inorganic hybrid perovskite: low as 47 fJ/um?

S D\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory
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. Synaptic Materials for Artificial Synapse (7/8) |DVENA=L=LS

e Elemtrams Devices & Aatarials Laberstery

(5) h-BN & MXene

h-BN diffusive memristor MXene Ti,C,T, Sheets

ofy: M
.._.L..J | m’- h _\,.#TE[L

s
g ” Whkm i LD
| " / [ — | i
o ' / o -
3= la / o
1l

\n. |
J “ﬂ '

1 i/ -
at / s
i LT
v | " B
o (] o
L R L L1}
i
Synapc Charcleristics of Usmibin Heeagonal Barce Nirkde 01-5M) Difusve Marisor ‘Partialy Cckzad M¥ane TiyS.T, Shents for Mamissar having Synapsn and Thmshold Rassiie
Fiysica Status Salic - Rapid Research Lefters 2020 Swilching Charctaristios’ Advanced Electionic Materials 2020

» 2D-flexible h-BN: PPF, SRDP, and STP to LTP synaptic behaviors are demonstrated

+ Transition metal carbide (Mxene): threshold resistive switching characteristics

S D‘\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory

. Synaptic Materials for Artificial Synapse (8/8) |DNENA=L=LaL®

Wang Flectremss Devicns & At Laberssery

Ferroelectric and Optical material

Al-doped HfO, ferroelectric thin filim Optical perovskite material
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“Analog Synaptic Transistor with Al-doped HfO, Ferroelectric Thin Film’

in preparation 2021
ACS Applied Materials & Interfaces 2021

+ A ferroelectric material-based thin-film transistor (FeTFT): analog conductance modulation
» Optical perovskite material: stable and subtle synaptic property modulation

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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. Synaptic Structure for Artificial Synapse N NEDMLU

Wano Elemtrams Devicws & atarisis Labsrstery
O

(7) Array and 3-terminal structure

HfO, 2-terminal crossbar array 3-terminal MOSFET synapse

Laza

Drain Gures (A)

Al 100 beorat e, L
'Tha Cossistenca of Thrashod and Memony Svitching Characedstics of ALD HID, Memnsior Synaplic

In preparation 2021
Arrays for Energy-Efficien! Neuromombhic Comging' Mancscale 2020

+ HfO,-based memristor synaptic arrays: threshold switching (TS) and memory switching (MS)
+ SOI-MOSFET synapse: stable synaptic plasticity using 3-termial structure

S D‘\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory

NEDMU

Wan Flectrams Desicws & Uaterisis Labsratery

N

FinFET
(2011 - 2022)

GAA-FET
(2022 - 2034)

1LE+05

-
-
1E40A -
Interconnect RC
LE«03
3 ~1000x
E 1E+D2
LE+01 -!! o =
LE4D0 l———-——}—_.____-___.
Transistor delay - -

LE01
L NG5 Na5 NZE N2O MN16 N1D N7

{2020 |EEE, IRDS Roatmap) {2013 [EDI. Quisleomm}

« Semiconductor processing reaches physical scaling limit
* Increased RC delay with longer interconnection line = Power consumption
= alternative integration scheme (3D integration)

Lhie ®Af 2% U S @P4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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N NEDML

Wano Elemtrams Devicws & atarisis Labsrstery

Example of 3D
tegration

H*-implantation (Smartcut) Temporary bonding material SOl wafer bonding/transfer
Pattern wafer Vaid fir

e

500850 1800 1200 1400
Spin coating RPM

« 3D integration can provide heterogeneous integration

« 3 different approaches have been developed to integrate
different wafer substrates in our laboratory

S D\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory

[Top] Neuromorphic device array

+ Change in the current level
according to the pulse
weight from CMOS.

[Bottom] CMOS circuits

+» The generated pulse
from the TEG in CMOS
device transmitted to the

g upper synapse device.
Digital

Controller

+ 3D neuromorphic system was implemented by neuromorphic array and CMOS circuits.

* The neuromorphic array devices were 3-dimensionally connected to CMOS circuits
that were designed by automatically and selectively evaluable TEG.

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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3D Neuromorphic Device System

TEG with CMOS circuits for neuromorphic system On-Chip learning neuromorphic system
Automated Test Sequence  |ow=me
Controfier i Coned
& prrte]

Pulse Tuning Controller

Ej
i
it

Synaptic Pulse
Generator

¥
]

ot [0y

Pubse & Voo
Contol Sxnal

DC Veltage o OC Cument

Voltage & Current |

Meas. Equement
CFFCHP

« The circuits with digital controller and control switch, which generated and derived
the controllable pulses to automatically selected neuromorphic devices.

« The incorporated neuromorphic devices with CMOS circuits were packaged and
attached to PCB to evaluate neuromorphic characteristics.

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

N NEDML

e Elemtrams Devices & Aatarials Laberstery

Electrical properties of RRAM device in arra Operating distribution of RRAM array devices
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« Electrical characteristics of one single device of the neuromorphic 12x14 array devices

(@) Diffusion-memristor, (2) Low operating voltage of 0.425 V,
(3 Onloff-current ratio of ~108, @ Endurance above 104

* Average Vg is ~0.43 V and the root mean squared error of operating Vg is ~ 0.088
in neuromorphic 12x14 array

= Reliable characteristics of neuromorphic array device are obtained

S D\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
! I > Nano Electronic Devices & Materials Laboratory

29




X1933] SRYUEIERS] OI7t0| LIS HE Dj2f MK, FRDL

Switching behavior of RRAM device on

CMOS circuit wafer
10* [Threshold Switching #
10* —#10
< 10° H
1 ONIOFF
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5 . HfO,
: 10° 5
© 10 Y
0.0 0.2 0.4 0.6 08 1.0 1.2 1.4
Voltage (V)

» TEM and SEM images indicate that 3D neuromorphic system is well fabricated

* The I-V characteristics of a neuromorphic array device on the upper substrate integrated
with CMOS circuit on the lower substrate: @ Vger ~0.46 V, @ |04 ~10°

Lhie FA} 2% U M2 FF 4 (bttp:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Maierials Laboratory

EDS analysis of RRAM device
Pristine After applying Veer
100 100f Ag HfO, Pt
-~ 90 9%
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* The neuromorphic 12x14 array devices on the CMOS circuits were analyzed by HRTEM to
study structure, depth profiles, crystallinity and elements state of device

+ EDS analysis of both initial state and state after applying Vgg: the Ag migration into HfO, layer

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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< 3D Neuromorphic System ‘fﬁﬂ NEDMU

Spike-rate dependent plasticity (SRDP)

Learnning curve 60| Spike-Rate-Dependent Plasticity

0.8} Synaptic weight & (_""3 , (SRDP)
- —2hV=av > - :1:‘: ; I30
< 0.6F—25Vv—2V © 40} EO‘.Z : |3u prp =230
:j' Learnningy . E 20l 5o ',@—J—U'Z" Iy
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o 0.2 %10. 0 p(fl) I

0.0 : et 0

0 5 10 15 20 25 30 2.0 25 30 3.5
Pulse number (#) Synaptic weight (V)

* Hebbian learning rule: the post-synaptic current level also increases when the strength of
the synaptic weight increases.

= Weight increased from 2 V to 3.5 V, learning rate also increased from 3x10- to 0.2 pA/#

« Pulse-paired facilitation (PPF) & Post-tetanic potentiation (PTP) are obtained from the
learning curve

> D\\ Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
5 I I é Nano Electronic Devices & Materials Laboratory

. 3D Neuromorphic System: Pattern Recognitioryp\INI=1=1\

s Flectrems Deviens & Uatoriai Labsrssery
0

Forgetting behavior Pattern training of 12x14 array device

| Forgetting Curve
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+ After strong stimulation, the stronger stimulation needs longer time to return to its initial state.
[The decreasing rates of exponential formula: 8.89, 2.89, and 2.02]

+ Array devices were trained by words of ‘H’ and ‘Y’ with the strong 3.5 V weight and the rest of
the devices were trained with 3.0 V synaptic weight. [relaxation time 0.1 s, read voltage 2.0 V].

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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3D Neuromorphic System: 3-Terminal Device ‘ﬁ\ﬂ NeDMU

Weao Elemtrams Deviens & Uatarials Labststery

Transistor synapse array integrated Synaptic plasticity with 3-terminal transistor arra
3D neuromorphic system
Translstor before 3D integration Tran5|swr after 3D integration

10 ey Excliatory
105 - a Post-Synaptic
10 1 Current(EPSC)
10" |

m

k Ilaimai ned

“alncreased EPSC

Drain current (A)
-
=1

2 40 60
Gate voltage (V) Pulse time (us)

Forgetting Curve Long-term Memory Pro
e -3V

synaptic *
weight © 2V

=

F v
i

e AV
Forgetting

: ~
=

12

Synaptic Current (A}
Synpatic current (pA}

0 100 150 200 250 300 350
Pulse time (ms) Pulse number (#)

.0 01 02 03 04 05

+ Electrical characteristics and synaptic plasticity of 3D neuromorphic system with 3-
terminal transistor synapses incorporated CMOS circuits have been demonstrated
(ex. EPSC, Forgetting curve, Long-term memory etc)

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory

3D Neuromorphic System: Image Recognition jRNENI=L=] | ®

Wasn Flectromss Devices & Uaturiai Labscatery

Synaptic plasticity and convolution neural network (CNN) simulation

& last Fully connected layer (7™, 8 layers) 100

pooling layer v.,,Oanm.Wm.ﬂ O CNN simulation
™ e 90
Posled :O ...... O
iy 8O}
Vo -qu.

O O, 0%
v Wy, Wy, 501

Maximum accuracy
~92%

Accuracy (%)
g 32

A

~— 2 v Y — il
50,000 images for training Only convolution layer (1%, 3, 5 layers) Input w.lglmd Webghhad 0 B0 160 240
10,000 images for inference  Convolution and Pooling layer (27, 41, 6™ layers) layer synapses  synapses Epoch (#)
Hidden Output
layer layer

» 3D neuromorphic system with 12x14 transistor array and CMOS circuits has been
implemented to recognize the specific image (ex. flower) using CNN simulation

» Maximum accuracy for the image recognition is ~92%

Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
Nano Electronic Devices & Materials Laboratory
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N NEDML

« Current computing system should be replaced by alternative computing system like
neuromorphic computing system.

« Various material, device, and systems have been explored along with several neural
networks

+ Main synaptic material and device structure have not been decided yet

+ 3D neuromorphic system with CMOS circuits and 2-terminal or 3-terminal device
arrays has been demonstrated with well-proven pattern or image recognition

+ Besides hardware-based neuromorphic system development, various algorithms
should be provided, indicating that holistic research should be carried out in the
fields of computer science/engineering, electricallelectronic engineering, materials
engineering, physics and so on

n Lhie ®A} 2% U XS @F4 (http:/mse.hanyang.ac.kr/nedml)
)N

Nano Electronic Devices & Materials Laboratory

N E D M L INTRODUCTION MEMBER PUBLICATION LECTURE BOARD

http://mse.hanyang.ae.kr/nedml|

otSCHSt i L RpARE S HEH A
Nano Electronic Devices & Materials Laboratory
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(Sensory Neuromorphic Technology)

Jin-Hong Park, Professor

School of Electronic and Electrical Engineering
SKKU Advanced Institute of Nano Technology
Sungkyunkwan University
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Necessity of Neuromorphic Computing

Parallel Computing

Data Explosion '

120 pmu?:mr 7
Structured
3 60
E
g
2 25% e
0 . Unstructured Data Processing Classified Data
1970 1980 1990 2000 'ma 2020 (Image, Sound) )fex Learning/Classification) )fstrlngs Number)
(Source: Harvard Business Review, by way of Zoroa)
* The amount of unstructured data is » With the advent of deep learning technology,
exploding (>100 ZB up to 2025) . ~ efficient processing of unstructured data becomes possible.

Conventional
Computing based on
Von-Neumann Arch.

Neuromorphic
Computing

Bus
CPU Memory
Series Data process Parallel Data process

L SIWpe,  Too high operating power and huge /m Efficient processing for unstructured
space for processing unstructured data G data (inspired by human brain)

i ”,sr waas s AMIACErR
Neuromorphm Technology e R sy o S 8 Ty 6_8_ oy

Hardware Platform for Neuromorphic Computing

Neuromorphic Hardware Platform -'

Neural Network Part of Neuromorphic Hardware
L“r% s DA | SL/BL Header | Ohm’s Law
(ingol ex) For N=3 Joltalge] [ : - == = —— St
qﬂ« Wyq Wio W d see (W, bl
A OuT(0] KA Bl ¥ ] i {Wan =
@ :‘\-" _ ouT[1 ]] [W21 sz Wza]l l = 3= J = — |
g outi2)] |Wiyq Wiy v 1] R

Conductance—| Conductance

Wy4 N[1j+WygIN[2 S : T
. ;f_ . =Wyl 1]#WagIN I H Artuficlal = Kirchhoff’s Law
: y : W34l [+Wg3lIN|2 Synapse g IWT;| Tf
ey - 1= £

\ 4971

@/ CLlrrent

‘Deep learning is performed on the basis of a matrix-vector multiplication (MVM).
*MVM requires neuromorphic hardware seen above (Ohm's law & Kirchhoff's law).

: Artificial Synapses Apprﬁach B: EIl.lll:I:IlllIIUl.lIIIDJCI.IIIDOCIIIIOCICIIll.llllllUII.l.lllII.:

Emerging Non-Volatile Memory ;
Approach A : CMOS-Based Memory H

0B

S, 1

i les BL " :
SRAM DRAM Flash memory =

L1
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Hardware Implementation of RRAM Synapse Array
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+ Demonstrated 12 x 12 crossbar memristor array.
« Classified 3x3 patterns via 23 times training epoch.

+ Increased array size up to 128 x 64. g C. Li et al, Nat. Elec (2018)
* Demonstrated various image processing (e.g. Compression, Filtering). UMass
= i [ :
" - = m - £ sy e

- 8 layer 3D monolithic integraled memnstor Sircuits. o p. Tin et al. Nat. Elec. (2020)
- Demonstrated real time video processing (Filtering). UMass 5
F msr waRNTSEUE 3 a; g';j_
Neuromorphic Technology Eei iy e ey

i
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:
:
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i
i
i
:
:
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Comparison of Artificial Synapse Technologies

Table 1 Comparison of emerging fetmiany technologies (alpes - cRimonal Ak Henacoak sl 2Rt
SRAM 3 DRAM MNAND Flash NOR Flash PCM STT-MRAM &  RRAM :

Memory technclogy

68 < 4R 10F? £207 6208 <4F30) |
mc s T ITDNR WATIR - § ATDNR %

<1V <10V <loVv =3V <2V E =3V

Cell area T oo T00F4E
Cell element
Voltage

Read time ~10ns ~ 10 pus ~50 ns <10ns <10ns i <10ns

Write time ~10ns 100ps-1 ms 10 ps-1ms ~50ns <5ns < 10ns

Write energy (1/bit} ~10f) ~10f) 100 pl ~10pJ ~0.1 pl io~00 pJ

Retention ~64 ms =10y =10y >10y =10y o> 10y

Endurance > 10'® > 10* > 107 > 10° > 101 ~ 10%- 10"

:
4

Mulibit capacity No Yes Yes Yes Yes i Yes
:
1

Non-volatility Na Yes Yes Yes Yes = Yes

-
m
w
wmmn

Scalability Yes Yes Yes Yes Yes

R SRR E SRR AR AR EEEE
=
= = - —
> i
R T T T T T

F: Feature size of lithography

IBM TrueNorth (2014)  Intel Loihi (2018)  Intel Loihi2 (2021) M. Prezioso et al. W. Wan et al. C.-X.Xueetal. 3
28nm CMOS 14nm CMOS 7 nm CMOS (UCSB 2015) (Stanford 2020) (Tsing Hua 2020)3
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Sensory Neuromorphic Technology (SNT) A e B2

Sensory Neuromorphic Technology: Concept & Trends

Convergence: Sensor Tech. + Neuromorphic Tech.

Sense Organs + Brain Sensor + Neuromorphic
~ | w— [ v Vi || Wy |
H Neuromorphic
Ol Signst Pt proc essor
) e

..:..n.., it Artificial

Sensor I =l M j_‘j Synapse
*Information collected from the retina is » Data obtained by the sensor is directly transmitted

directly transmitted to the brain without storage. to the neuromorphic processor without storage.

Industrial Trends

Pixel
4 Energy consumption |
g Response time |

Security problem X

Data storage X
AlEngine /Memory

Intelllgent Vision Sensor
SONY 2020

*Source ; Sony, Sony to Release World's First Inteligent *Source; YOLE, Neuromorphic Computing and Sensing (2021}

Vision Sensors with Al Processing Functionality (2020}
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Sensory Neuromorphic Technology (SNT) e (BRI

Sensory Neuromorphic Research Summary

History of Sensory Neuromorphic Approach A :

Integration of Sensor and
Neuromorphic Device (Synapse)

Year
= AgNWs/PDMS Prossure
o }m
2016 }

Artificial haptic memory

Artificial motor

Haptic processing
memo devices
B % Integration of Sensing Elements onto
g, ‘:"‘«.:-._ Neuromorphic Processor (Neural Network)
.'.&"? Sound
Speech
recognition
2 Artificial nociceptor  Adificial ionic memory
. = e == _Straln " Signal
o = s 4 Language
ﬁ . ‘ Translation
Artificial afferent nerve Artificial optic- -
neural synapse Electric " .
inical data
Source” C, Wan et al. Adv. Mat (2020 I St
e T A ) classification

» Sensors have been integrated with

artificial synapses (neural network). . progessor .

KAST v3wiseus
The Koraan Acadeny & Scwnce sad Technslogy

Recent Progress in SNT

Approach A: : Integration of Sensor and Synapse

Integration of Optical Sensor and Artificial Synapse
Vst Dark Fed

Ak 03V, 10ms, 1 Hz

Optic-neural network

Test Set
Output layer

Input layer

Training Set

/

4
/|4
/|4

Recognition rate (%)

« 20 different shapes
A

+

= 100 different shapes
A

4
4
4

Mixed-color digits

Single-color digits (Target : Single-colored & distinct shape) ~ Optic-neural synaptic devices

2x10°8 2x1077
Voltage Optical input Postsynaptic -JE 15100 1.4 151x107
input R GB current (PSC) — o A A
ynaptic - i E -~
— [- ¥ | ’ Voitsa ideiite % s (Nan-ineariy) . %
: g 0 100 2000 100 200 g
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Toy 5D
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Optical 121078 N 3 12105
- = 5 = " input 15 Y 15
Optical-Sensing Device Synaptic Device Vi V=01V
—" Vouss Py =Py = Py = 6 mWem2 AT AT T AT
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Recognition for Colored and Color-Mixed Patterns

& Meural Network (NN}
#* Dptic-Neural Network (ONN)

f“'.‘.‘" * '.’.1.."‘100

/

*

o
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o
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G0
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»

a
] 150 300 450 600
Epoch

S. Seo et al. Nal. Cemmun. (2018)
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Approach A: : Integration of Sensor and Synapse

Integration of Tactile Sensor and Artificial Synapse , 2
Touch Sensor Ves -__h_ﬂ._ﬂ_'.‘f
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2288
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i . \
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= Bvare Proec Decic Synapse =l J% =
== Semiconducior = Suppord == Suspended Gate Tirme (s}
. = T Y. Zang et al_ Adv. Mater. (2017)
Integration of Photodetector and Artificial Synapse
1R {upprer] and Uy wer) light slicon solar Ce
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800 n u ¥ f ™
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Y. Lee et al. Sci. Adv. {2018)

: aaReIS U AMBCGT
Recent Progress in SNT A ey, (B3R

Approach A: : Integration of Sensor and Synapse

Artificial Nociceptor: Thermoelectric Sensor + Artificial Synapse

P 2 o, e
Themoelectnc ij__ Thermal nociceptor system | AU Teup- 00} |

lefJ Cht ® m

Noccaptor Time (s)

J. H. Yoon, Nat. Commun. (2017)
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Integration of Chemical Sensor and Artificial Synapse
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Recent Progress in SNT
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The Koruan Academy of Science and Teckasiogy
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Approach B: Integration of Sensing Elements onto
Neuromorphic Processor

Patterning of Sound Data

Acoustic pattem

Designed acoustic patiern (20 = 20)

) e GO s | e a Oenie’
) = =
o L pr——— -———
Slop #3 q o . - -'ﬂ" 4 '}- =
| o |

Transiormanoh
&

Froquenay

200 samples

e

PR

- el

Cv e T o
"™l

= e e

Recognition of Sound Data

Recent Progress in SNT

The Karwan Acadeny of Science and Technaiogy

& 100
PSGC = PSC, + PSC, Artificial neural network (ANN) €8 .
wput layer  Synapse weights  Output layer Eg 85
2= > @
2E | e
E » 78.5%
WSe;, MaS;  Hybrid
Device label
14
2 _
ES *
§ = 12.5% 7.0%
=E a >
§'_=a B.1% (BW-NN) ==
WSe, MoS; Hybrid
Device label
Vet S. Seo etal Nat. Commun. (2020)
LR LR A LS

Approach B: Integration of Sensing Elements onto
Neuromorphic Processor

Patterning of Han

d Signal Data

. Recognition of Hand Sign Data

isu.rx{q I'r&im'tn.mo lesting patems]

(15 neurons) (15 B synapses)

rmalized input voltage (V)

8 neurons). b
— 50
&
- i WG e V-4 W
2 gl =Bumay—svigv
= 02 46 81
g Training epoch (=10)
5‘ 100 e
g2 99.4% ”
[:4 (=5 V-2V P
50 (=5 V=3V ‘
=5 V-4 W 43.5%
5 Vi-5 V

47 48 49 50 51 52
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5. Ohetal Sci. Adv, (2021)
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Approach B: Integration of Sensing Elements onto
Neuromorphic Processor

Patterning of Electrocardiogram (ECG) Data

Human heart Single waveform consisting of Five types of ECG waveforms Step #1: Preprocessing
five specific waves °
=
G 2
N \/ww =
T =—— -1 - £
- g ‘ q Single waveform <
l" Time l
VR A A
apn @
—— P wave — Alrial depolarization F L,_\_A_}L/V‘_AJ\- g
: 1 ) ) =
— R waw Ventricular d | i Yot
=3l :c-.-:\(e J> enincular aepolanzation Q \/-/;\//; E
= Twaye — Ventricular repolarization

Recognition of Electrocardiogram (ECG) Data

Presynaptic Postsynaptic .- Eptﬁnﬂ_ﬂlﬁdéDegrBS;ﬁ -
terminal Plaser terminal.-~" - 1 —

N gl - : - -+

. . e -+ | @ i 0 4

Vi Y B B0 i e AOFR
0¥

b _ . 1. Genaration
§ by oplical splke
Q b 3B

Training accuracy ()

Si0,/Si

e
Welght control | Vygsesses Mo @ B M < 0_* Ve > 0 ¥
terminal e [ s aN e ———

" Conciusion MAST s ez
The Ko Acsdemy & Scwncs aad Tachasiogy 1

W

Conclusion: From Neuromorphic Technology to
Sensory-Neuromorphic Technology

1. Rapid Progress of Neuromorphic Technology:
- [SRAM] 14, 7-nm CMOS technology was applied to Intel Loihi 1,2.
- [New Memory] 3*3 simple pattern recognition technology
— image and video filtering for just five years.

2. Various idea/concept on sensory neuromorphic technology was proved.
- [Sensor* + Synapse] Simple integration was suggested.
- [Sensor* — Neural Network] Integration of sensory system and
neural network was suggested.
* Optical/haptic/tactile/chemical sensors were reported.
No SNT works using olfactory sensors were reported yet.

3. 1: advanced neuromorphic tech. + 2: various application idea —
Development and Industrialization of Sensory Neuromorphic Technology
(ex. Sony'’s Intelligent Vision Sensor)
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K™MEZ 1. Why Neuromorphic Computation?

Why Neuromorphic Computation?
 e00 |

ol Ml =
SK hynix D2iH[22|H7 HS(Fellow)

Dec. 13th 2021
Seho Lee.
Fellow / SK hynix R&D
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2) Neuromorphic Value & Challenge

Digital-Transformation Environment

“High Speed Network” + “Ultra Low Power”+ “Smart” in Everything

Gateway NW Core Network Service Provider

N - ) . Edae DC 3 Telco DC T
Mobile, AR/VR, loT, Automotive... 9 &5 & ,v{/ ( J Internet
o) s e _—r S e Service DC

-

o —-\—"45

F = & Aﬁ/ﬁd /_) —
@ Enterpnse DC -
HPC DC

Smart Car Smart Traffic Smart Agriculture Smart Shopping Smart Home  Smart Healthcare Smart Factory
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COVITAL: COVID Accelerates DIGITAL
Transformation

We meet online We work online We learn online

Metaverse — From Game To Virtual Life

From Sci-Fi To Virtual Reality ,
Finally to Virtual World?

Virtual World > Virtual Asset y Virtual Transaction

dm] et |
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Neuromorphic Impact

Inspired by the Brain, dedicated to imitating biological neural networks

Biological Neural Network in Human Brain
Low Power & High Performance = Artificial Neural Network (ANN) in Neuromorphic Processor

Braun smulition by
traditioral computing
hardware

ivan (eney

(Source: Yole 2019)

Low Power Value for Energy & Environment

ESG & RE100 : Ultra Low Power Technology

2037: Beyond CO; budget
2030: Energy Supply Issue

2037
Budget
Exceeded

Networks
Production of ICT
€0, budget: 790Gt B Consumer devices

(< 2C 2015~2100) Data centers

Power Consumption (TWh)

redu ction \

Cumulative Carbon Emissions (Giga ton)
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Energy Saving Perspective & Potential

2nd Critical

Energy Production of the World

Innovative Solution

Current Convergence | :
Solution Solution Neuromo:l'phlc
Computing

Joule/year

Last 20 years Now Next 20 years

Technological Challenges

Von Neumann based
Memory-Centric Hybrid
Workload-Driven Post Von Neumann

CUrtant HBM PNM PIM CIM
(High Bandwidth Memory) (Process Near Memory) (Process In Memory) (Computing In Memory)

Brain-like

o |y
- - f
. Memory Memory

Memory | | Memory : : m— Computiog i Camputing n
(DRAM) (HBM) Memary Memory

Memory Role Transformation

Within Memory Innovation >

Beyond Memory Innovation (+ Logic & AI) >
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Process in Memory (MAC Core in DRAM)

v’ Current Architecture: Compute CoresT, But, Memory Bus-Narrow (Limited)

Ilemany Botticactk v Compute Primitives = Into Memory Chip

Accelerator Memory

<= Need
Innovation

Al Accelerator

ccelerator

Analog Computation in Memory
Breaking the Boundaries Between Compute & Memory : Ultra Low Power & High Performance

Conventional Digital
Computing

[ ACIM cell ACIM cell
{—’{ Memory

1 ACIM cell ACIM cell
c°“"P‘"""9 Memory

ACIM cell ACIM cell

Memory-Centric Analog Solution: A-CiM

SRC 2030 Decadal Man

Storage

=IW;Vi =(V*Gp) +(V1*G) +(V,*Gy)

Conventional Memory Cell : Bit by Bit Accuracy Computation Memory Cell: System Accuracy
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A-Computation in Memory Potential

+ Ultra Low Power Technology: >> 100 TOPS/W
+ Early Stage: For Edge Al Inference & Training

# 1 GPU v100

4

Performance (TOP/s)

0.001 0.01 0.1 1 10 100
Power consumption (W)

(Source :
IMEC)

Thank You




XI™MEZE 2. Brain Inspired Al Technology
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XI™MEZE 2. Brain Inspired Al Technology

Brain Copy : Harvard/Samsung, Nature Electronics 21

- ME MUl YEYI MENE Qrf2 HIZ D
2ABE 71

MNeuromorphic electronics based on copying and
pasting the brain
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